Skip to main content

Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay

Abstract

Background

This study assessed the Granzyme B (GrB) ELISPOT as a viable alternative to the 51Cr-release assay for measuring cytotoxic activity of innate immune effector cells. We strategically selected the GrB ELISPOT assay because GrB is a hallmark effector molecule of cell-mediated destruction of target cells.

Methods

We optimized the GrB ELISPOT assay using the human-derived TALL-104 cytotoxic cell line as effectors against K562 target cells. Titration studies were performed to assess whether the ELISPOT assay could accurately enumerate the number of GrB-secreting effector cells. TALL-104 were treated with various secretion inhibitors and utilized in the GrB ELISPOT to determine if GrB measured in the ELISPOT was due to degranulation of effector cells. Additionally, CD107a expression on effector cells after effector-target interaction was utilized to further confirm the mechanism of GrB release by TALL-104 and lymphokine-activated killer (LAK) cells. Direct comparisons between the GrB ELISPOT, the IFN-γ ELISPOT and the standard 51Cr-release assays were made using human LAK cells.

Results

Titration studies demonstrated a strong correlation between the number of TALL-104 and LAK effector cells and the number of GrB spots per well. GrB secretion was detectable within 10 min of effector-target contact with optimal secretion observed at 3–4 h; in contrast, optimal IFN-γ secretion was not observed until 24 h. The protein secretion inhibitor, brefeldin A, did not inhibit the release of GrB but did abrogate IFN-γ production by TALL-104 cells. GrB secretion was abrogated by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid tetra(acetoxymethyl) ester), which sequesters intracellular Ca2+, thereby preventing degranulation. The number of effector cells expressing the degranulation associated glycoprotein CD107a increased after interaction with target cells and correlated with the stimulated release of GrB measured in the ELISPOT assay.

Conclusions

Because of its high sensitivity and ability to estimate cytotoxic effector cell frequency, the GrB ELISPOT assay is a viable alternative to the 51Cr-release assay to measure MHC non-restricted cytotoxic activity of innate immune cells. Compared to the IFN-γ ELISPOT assay, the GrB ELISPOT may be a more direct measure of cytotoxic cell activity. Because GrB is one of the primary effector molecules in natural killer (NK) cell-mediated killing, detection and enumeration of GrB secreting effector cells can provide valuable insight with regards to innate immunological responses.

Background

Cytotoxic T-lymphocytes (CTL) and natural killer (NK) cells play an important role in host defense against intracellular pathogens and tumor cells. CTL recognize target cells through processed antigenic peptides presented via MHC. In contrast, NK cells mediate lysis of numerous cellular targets without classical MHC restriction. NK cells appear to use a variety of different, non-rearranging receptors to initiate cytoxicity and cytokine production [1]. Although CTL and NK differ in the receptors they use to recognize target cells, they both utilize the granule exocytosis and the Fas ligand (FasL)-mediated pathways to eliminate altered-self targets [2–6]. The granule-mediated pathway is the dominant pathway in CTL and NK [5]. CTL and NK cell granules contain a number of proteins, including perforin and granzymes, with GrB being the most abundant granzyme present [7, 8]. Upon recognition and conjunction of the effector cell with the target, preformed granules containing GrB polarize in cytolytic lymphocytes at the point of contact and are secreted into the intercellular space formed between the effector and target cell [9–14]. The secretion of GrB occurs quite rapidly, is Ca2+-dependent, and mediates the lethal hit that kills virus-infected and tumor cells [2, 7, 8, 10, 15–19].

Cell-mediated cytotoxicity has conventionally been measured using the standard 51Cr-release assay [20]. Recently, the use of the IFN-γ ELISPOT assay as a surrogate measure for CTL and NK responses has gained increased application. However, the IFN-γ ELISPOT assay may not be an accurate measure of cytotoxic lymphocytes as non-cytotoxic cells can secrete IFN-γ. Since GrB is exclusively present in the granules of CTL and NK cells and is a key mediator of the granule exocytosis-mediated cytolytic pathway [21–23], it is an excellent candidate marker for immunological monitoring of innate immunity by the ELISPOT method.

The ELISPOT method has been successfully applied to measure GrB secretion by GrB-transfected CHO cells and for assessing antigen specific T-cell cytotoxic activity [24, 25]. In this study, we utilized human NK-like and lymphokine-activated killer (LAK) effector cells to assess whether the GrB ELISPOT assay could accurately measure the MHC non-restricted cytolysis that occurs upon recognition of appropriate target cell ligands by activating receptors on these effector cells. Additionally, we evaluated whether the ELISPOT assay measured GrB release due to degranulation of stimulated effector cells. The GrB ELISPOT assay was strategically compared to the IFN-γ ELISPOT and the standard 51Cr-release assays to determine if the GrB ELISPOT assay is a viable or better alternative to measure innate immunity.

Methods

Target cell lines

K562 cells (Human myelogenous leukemia cell line, ATCC, Manassas, VA) were cultured at 37°C, 5% CO2 in tissue culture medium (TCM) consisting of RPMI 1640 (BioWhittaker, Walkersville, MD) supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan, UT), 1 mM non-essential amino acids, 2 mM glutamine, 100 U/ml Penicillin, 100 μg/ml Streptomycin, 20 mM HEPES and 1 mM sodium pyruvate (Gibco BRL Life Technologies, Grand Island, NY).

TALL-104 effector cells

The TALL-104 cell line is a T-cell derived line that is highly cytotoxic for NK-sensitive targets and when grown in the presence of IL-2, can be stimulated to secrete IFN-γ and GrB [26, 27]. The cell line was cultured in Iscove's modified Dulbecco's medium (BioWhittaker) supplemented with 20% FBS (Hyclone), 4 mM glutamine, 100 U/ml Penicillin and 100 μg/ml Streptomycin (Gibco BRL Life Technologies) at 8% to 10% CO2. Recombinant human IL-2 (100 U/ml; Hoffmann-LaRoche, Nutley, NJ) was added every 2–3 days to ensure optimal growth and maintenance of cytotoxic activity.

Generation of human lymphokine-activated killer (LAK) cells

Peripheral blood mononuclear cells (PBMC) were isolated from venous blood of normal human volunteers by buoyant density centrifugation over Ficoll-Paque (Pharmacia, Piscataway, NJ). Aliquots of effector cells were cryopreserved in the vapor phase of liquid N2 for future use in functional testing. The PBMC were thawed and resuspended at 2 × 106 cells/ml in 20 ml of RPMI 1640 (BioWhittaker) containing 10% human AB serum (Mediatech, Herndon, VA), 1 mM non-essential amino acids, 2 mM glutamine, 1 mM pyruvate, 20 mM HEPES, 100 U/ml Penicillin and 100 μg/ml Streptomycin (Gibco BRL Life Technologies). Cell suspensions were stimulated with 100 U/ml of IL-2 (Hoffmann-LaRoche) on day 0 and cultured for 5 to 6 days at 37°C, 5% CO2. LAK cultures consisted of 30.0 ± 2.1 % NK cells (CD3-,CD16/CD56+) and 26.9 ± 4.9 CD8+ T-cells as determined by flow cytometric analysis.

Secretion Inhibitors

TALL-104 cells were treated with inhibitors of cellular secretion prior to use in the GrB and IFN-γ ELISPOT assays. Inhibitors used included 1,2-bis-(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM, Molecular Probes, Eugene, OR), a cell permeant chelator of intracellular Ca2+, and γ,4-dihydroxy-2-[6-hydroxy-1-hep-tenyl]-4-cyclopentanecrotonic acid λ-lactone (brefeldin A; Sigma, St. Louis, MO) which blocks protein secretion. TALL-104 cells were resuspended at 2.5 × 105 cells/ml and 2.5 × 104 cells/ml in PBS without divalent cations for BAPTA-AM and brefeldin A treatment, respectively. Cells were pretreated with the indicated concentrations of BAPTA-AM for 45 min or with 5 μg/ml brefeldin A for 1 h at 37°C, washed twice, assessed for viability by trypan blue exclusion, and resuspended at 2.5 × 104 cells/ml in assay media.

51Cr-release assay

Cytotoxicity of TALL-104 and LAK cells was assessed using the standard 51Cr-release assay. Briefly, one million target cells were labeled at 37°C for 1 h with 100 μCi Na251CrO4 (New England Nuclear, Boston, MA). Target cells were washed and resuspended in TCM at 5 × 104 cells/ml. Five thousand target cells per well (100 μl) were added to a 96 well plate (Costar, Cambridge, MA) following the appropriate number of effector cells (100 μl/well). The defined effector:target (E:T) ratios were plated in triplicate. Cytotoxicity assays were performed at 37°C for 4 h. Percent specific lysis was calculated using the following equation:

(ER - SR)/(MR - SR) × 100,

where ER = experimental release, SR = spontaneous release and MR = maximum release.

Granzyme B ELISPOT assay

Granzyme B secretion was measured using the GrB ELISPOT assay as previously described [25]. Briefly, MultiScreen-IP plates (PVDF membrane, Millipore, Bedford, MA) were coated overnight at 4°C with 100 μl/well of anti-human GrB antibody (7.5 μg/ml in PBS, clone GB-10, PeliCluster, Cell Sciences, Norwood MA). Effector cells (100 μl/well) were added to triplicate wells at specified concentrations followed by 5 × 104 target cells per well (100 μl). After the specified effector-target cell incubation, the plates were washed and 100 μl/well of biotinylated anti-human GrB detecting antibody (0.25 μg/ml in PBS/1% BSA/0.05% Tween 20, clone GB-11, PeliCluster, Cell Sciences) was added. Plates were incubated for 3 h and 50 μl of Streptavidin-Alkaline Phosphatase (1:1500 in PBS/1% BSA, Gibco BRL Life Technologies) was added for 1 h. Spots were visualized with 100 μl/well of BCIP-NBT phosphatase substrate (KPL, Gaithersburg, MD) and subjected to automated evaluation using the ImmunoSpot Imaging Analyzer system (Cellular Technology Ltd, Cleveland, OH).

IFN-γ ELISPOT assay

For assessing IFN-γ secretion, MultiScreen-IP plates (PVDF membranes, Millipore) were coated overnight at room temperature with 50 μl/well of anti-human IFN-γ antibody (20 μg/ml in PBS, Biosource, International, Camarillo CA) as previously described [25]. After effector and target cells were incubated at 37°C, the plates were washed and 50 μl/well of biotinylated anti-human IFN-γ antibody (1.3 μg/ml in PBS/1% BSA/0.05% Tween 20, BD PharMingen, San Jose, CA) was added. Plates were incubated with biotinylated antibody, washed and 50 μl of Streptavidin-Alkaline Phosphatase (1:1500 in PBS/1% BSA, Gibco BRL Life Technologies) was added. Spots were visualized and enumerated as described above.

CD107a mobilization assay

Degranulation of TALL-104 and LAK cells in response to target cell recognition was assessed by monitoring surface antigen expression of CD107a (lysosomal-associated membrane protein-1), a surface antigen transiently present on the cell surface after release of cytolytic granules. Expression of CD107a has been used as a marker to measure degranulation by flow cytometry [28, 29].

To distinguish target cells from effector cells, K562 cells were first labeled with PKH67 dye (Sigma) according to the manufacturer's instructions and washed extensively prior to use in the assay. Effector cells (2 × 105) were resuspended in 400 μl of phenol red-free TCM in polystyrene tubes (Falcon, Franklin Lakes, NJ). PKH67-labeled K562 target cells (1 × 105 cells in 50 μl) were then added to appropriate tubes, the tubes were spun for 30 sec at 500 rpm and incubated for the specified periods in a 37°C water bath. Reactions were quenched with cold PBS and then 20 μl of CD107a-PE-Cy5 (PharMingen) was added. Mouse IgG1-biotin (Beckman-Coulter, Miami, FL) and streptavidin-PE-Cy5 (Caltag, Burlingame, CA) were utilized for controls. Tubes were incubated with antibody for 20 min at room temperature, washed with buffer and analyzed using a FACScan instrument (Becton-Dickinson Immunocytometry Systems, San Jose, CA) equipped with a 15 mW argon-ion laser. The percent of effector cells expressing CD107a was determined by gating the PKH67 negative (effector cells) population. Within the PKH67 negative gate, CD107a expression was determined from histograms based on forward and side scatter analysis. Effector cells run in the absence of target cells were evaluated for baseline expression of CD107a. The percentage of effector cells induced by target cells to express CD107a was calculated by subtracting background (spontaneous) expression from experimental samples.

Statistical analysis

Statistical analysis was performed using Student's t test and Pearson correlation coefficient (R2).

Results

GrB release by stimulated TALL-104 cells

GrB ELISPOT assays were performed using a constant number of K562 targets and decreasing numbers of TALL-104 effector cells per well. As the number of TALL-104 cells decreased, the resulting number of GrB spots decreased linearly. Limited GrB spots were detected in wells containing TALL-104 alone demonstrating that the ELISPOT assay measured primarily stimulated release of GrB (Fig. 1). K562 alone did not secrete GrB (data not shown). The correlation between the number of spots per well and the number of TALL-104 was highly significant with a Pearson correlation coefficient of R2 = 0.98. Therefore, the GrB ELISPOT assay is capable of measuring the frequency of effector cells stimulated to secrete GrB.

Figure 1
figure 1

Granzyme B release by stimulated TALL-104 cells measured in the ELISPOT assay. TALL-104 cells (1 × 103, 2 × 103 or 5 × 103 cells per well) were incubated with K562 targets (5 × 104 cells per well) for 4 h at 37°C in the Granzyme B ELISPOT assay (effector:target cell ratios are in brackets). Data are presented as average number of spots per well ± SD and are representative of 3 experiments with similar results. A significant correlation between the number of spots per well and effector cell number was observed (R2 = 0.98).

Correlation of GrB secretion and cytotoxic activity

In tandem with the GrB ELISPOT assay, TALL-104 cells were also utilized as effectors against K562 targets in the standard 51Cr-release assay to assess lytic activity. Significant specific lysis was observed at effector:target ratios from 10:1 to 1:1 (Table 1). In contrast to the ELISPOT assay, that can measure the frequency of cytotoxic cells at effector:target ratios as low as 0.02:1, specific lysis was not significant in the 51Cr-release assay at cell ratios below 1:1 (Table 1). However, when optimal ratios were used in each individual assay, similar trends between the number of GrB spots per well in the ELISPOT and specific lysis in the 51Cr-release assay were observed. These data demonstrate that the release of GrB is indicative of cytolytic activity.

Table 1 Comparison of the GrB ELISPOT and 51Cr-release assays for measuring TALL-104 cell activity.

Secretion kinetics of GrB and IFN-γ

To measure the secretion kinetics of GrB compared to IFN-γ, TALL-104 cells were incubated with K562 target cells for the indicated times in the ELISPOT assays. Secretion of GrB was compared to IFN-γ because IFN-γ is currently the standard utilized to measure the frequency of cytotoxic cells via the ELISPOT method. GrB secretion was observed within 10 min of effector-target cell interaction with optimal secretion around 3–4 h (Fig. 2). This observation is in contrast to maximum IFN-γ production, which was observed at 24 h of effector-target interaction (data not shown). These data are consistent with rapid effector cell degranulation (within minutes) upon contact with target cells [18, 19].

Figure 2
figure 2

Kinetics of Granzyme B and IFN-γ secretion by TALL-104 cells in the ELISPOT assays. TALL-104 cells (2.5 × 103 cells per well) were incubated with K562 cells (5 × 104 cells per well) in the Granzyme B and IFN-γ ELISPOT assays for 0.2, 0.5, 1, or 4 h at 37°C. Data are presented as average spots per well ± SD. Results are corrected for background and are representative of 3 experiments with similar results.

Mechanism of GrB secretion

Effects of secretion inhibitors on the release of GrB and IFN-γ in the ELISPOT assays as well as expression of CD107a on effector cells were evaluated to determine the possible mechanism of GrB release measured in the ELISPOT assay. TALL-104 cells were treated with inhibitors of cellular secretion and assessed for their ability to release GrB and IFN-γ in the ELISPOT assays. BAPTA-AM chelates intracellular Ca2+ and was utilized to block degranulation. Brefeldin A, which blocks protein secretion, was utilized to prevent secretion of newly synthesized proteins.

Loading TALL-104 cells with BAPTA-AM resulted in a dose-dependent inhibition of GrB secretion (Fig. 3). Inhibition of GrB was not attributed to alterations in cell viability as TALL-104 cells loaded with as high as 100 μM of BAPTA-AM remained viable as assessed by trypan blue exclusion (data not shown). Brefeldin A treatment did not alter the secretion of GrB when TALL-104 cells were stimulated with K562 targets but did significantly (p < 0.05) inhibit IFN-γ secretion (Fig. 4). Additionally, increased expression of the degranulation marker, CD107a, on TALL-104 cells was observed when TALL-104 cells were incubated with K562 target cells. Compared to TALL-104 cells alone, the addition of K562 targets induced 13.75% of TALL-104 cells to express CD107a (Fig. 5). Taken together, these data are consistent with synthesis of IFN-γ de novo while GrB is released from preformed granules upon effector-target interaction.

Figure 3
figure 3

Effect of BAPTA-AM on Granzyme B secretion by TALL-104 cells. TALL-104 cells were pretreated with the indicated concentrations of BAPTA-AM for 45 min at 37°C. TALL-104 cells (2.5 × 103 cells per well) were incubated with K562 (5.0 × 104 cells per well) for 4 h in the Granzyme B ELISPOT assay. Data are presented as spots per well ± SE (n = 3). Results are corrected for background.

Figure 4
figure 4

Effect of Brefeldin A on Granzyme B and IFN-γ secretion in the ELISPOT assays. TALL-104 cells were preincubated with brefeldin A (5 μg/ml; 1 h at 37°C) prior to use in the ELISPOT assays. TALL-104 cells (2.5 × 103 cells per well) were incubated with K562 (5 × 104 cells per well) for 4 h in the Granzyme B and 24 h in the IFN-γ ELISPOT assays at 37°C. Data are presented as percent inhibition ± SE (n = 3). Results are corrected for background.

Figure 5
figure 5

Stimulated TALL-104 cells express the degranulation marker CD107a. TALL-104 (2 × 105 cells) were incubated with K562 (1 × 105 cells) and surface expression of CD107a was determined by flow cytometric analysis. K562 were prelabeled with PKH67 dye to differentiate effector cells from targets. The histograms represent the PE-Cy5 CD107a positive cells determined by forward versus side scatter of the gated effector cells. TALL-104 cells alone are represented by the open histogram and TALL-104 cells incubated with K562 for 1 h are represented by the shaded histogram. The data is representative of 3 experiments with similar results.

Application of the GrB ELISPOT assay to assess innate immunity

To address the potential clinical relevance of the GrB ELISPOT assay, LAK cells derived from PBMC, rather than the TALL-104 cell line, were utilized as effector cells. As shown in Figure 6, the number of GrB spots per well correlated with the number of LAK cells added, results comparable to those obtained with TALL-104 cells. Only wells containing both LAK and K562 target cells contained a substantial number of spots (Fig. 6).

Figure 6
figure 6

Granzyme B release by stimulated LAK cells measured in the ELISPOT assay. Human peripheral blood mononuclear cells (PBMC) were cultured with 100 U/ml of IL-2 for 5–6 days to induce LAK cells. LAK cells (1 × 103, 3 × 103 or 1 × 104 cells per well) were incubated with K562 (5 × 104 cells per well) for 4 h at 37°C. Effector:target cell ratios are in brackets. Data are presented as average number of spots per well ± SD and are representative of 5 experiments with similar results. A significant correlation between the number of spots per well and effector cell number was observed (R2 = 0.94).

The secretion kinetics of GrB and IFN-γ by LAK cells were similar to that observed for TALL-104 cells. GrB secretion was seen within 10 min of effector-target cell interaction with optimal secretion around 3 h and maximal IFN-γ production was observed at 24 h of effector-target interaction (Fig. 7). Similarly, stimulated secretion of GrB by LAK cells was associated with increased surface expression of the degranulation marker, CD107a. The correlation between the number of GrB spots and the number of cells expressing CD107a per 100,000 effector cells was significant (R2 = 0.89, Fig. 8). These data demonstrate that the GrB ELISPOT assay accurately measures the rapid release of GrB by stimulated LAK cells and can enumerate GrB-secreting effector cells.

Figure 7
figure 7

Kinetics of Granzyme B and IFN-γ secretion by LAK cells in the ELISPOT assays. Human peripheral blood mononuclear cells (PBMC) were cultured with 100 U/ml of IL-2 for 5–6 days to induce LAK cells. LAK cells (5 × 103 cells per well) were incubated with K562 cells (5 × 104 cells per well) in the Granzyme B and IFN-γ ELISPOT assays for 0.2, 0.5, 1, 4 or 24 h at 37°C. Data are presented as average spots per well ± SE (n = 6). Results are corrected for background.

Figure 8
figure 8

Correlation between CD107a expression measured in the flow cytometric assay and Granzyme B release measured in the ELISPOT assay. Human peripheral blood mononuclear cells (PBMC) were cultured with 100 U/ml of IL-2 for 5–6 days to induce LAK cells. LAK cells (5 × 103 cells per well) were incubated with K562 cells (5 × 104 cells per well) in the Granzyme B ELISPOT and 2 × 105 LAK cells were incubated with 1 × 105 K562 in the CD107a mobilization assay for 0.5, 1 and 3 h. The ELISPOT data are presented as spots per 1.0 × 105 effectors ± SE (n = 9) and the CD107a data as the number of positive cells per 1.0 × 105 effectors ± SE (n = 9). All results are corrected for background. A significant correlation between the number of GrB spots and CD107a positive effector cells was observed (R2 = 0.89).

LAK cells were utilized in the GrB ELISPOT, IFN-γ ELISPOT and 51Cr-release assays to evaluate the different assays for measuring innate immunity (Table 2). Both ELISPOT assays were significantly more sensitive than the 51Cr-release assay. At effector:target ratios of 20:1-5:1, significant specific lysis can be measured by the 51Cr-release assay but the spots per well in the ELISPOT assays were too numerous to count accurately. Significant IFN-γ and GrB secretion was evident at effector:target ratios as low as 0.02:1 (1000 effectors/well) therefore, the optimal ratios for the ELISPOT assays are below the level of sensitivity of the 51Cr-release assay (Table 2). However, when the optimal number of LAK cells are used in each individual assay, the amount of GrB and IFN-γ secreting cells in the ELISPOT assays and cytotoxicity in the 51Cr-release assay have shown cross-correlation with R2 values greater than 0.86 for all combinations. When comparing the two ELISPOT assays, the GrB ELISPOT is more rapid and may be a more direct measure of cytotoxic activity than the IFN-γ ELISPOT. Therefore, the GrB ELISPOT assay can elucidate the frequency of GrB secreting cells in primary LAK cultures and can be applied to measure innate immunity in clinically relevant samples.

Table 2 Comparison of the GrB ELISPOT, IFN-γ ELISPOT and 51Cr-release assays for measuring Lymphokine Activated Killer (LAK) cell activity.

Discussion

NK cells are a key part of innate immunity due to their ability to secrete cytokines and mediate cytolytic activity and act as an important first line of defense against virally infected cells and tumor cells [30]. Although cytokine secretion by NK cells plays a role in regulating the adaptive immune response, cell-mediated cytotoxicity is the major effector function of NK cells. NK cells can mediate cytotoxicity by two main pathways, FasL-mediated and granule-mediated. The granule-mediated pathway, however, is dominant in NK cells with the release of GrB as one of the key factors in the lethal interaction that kills virus-infected and tumor cells [2, 5, 7, 8, 10, 15–19]. Therefore, evaluating the secretion of this molecule provides an indirect measure of cell-mediated cytotoxicity mediated via the release of granules.

The GrB ELISPOT assay has been previously applied to enumerate the frequency of antigen-specific T cells and this release of GrB by T cells was indicative of cytolytic ability [24, 25, 31]. Moreover, the GrB ELISPOT assay requires significantly less effector cells than the standard 51Cr-release assay [24, 25]. In this study, we demonstrated that the GrB ELISPOT assay can be utilized to determine the frequency and potential cytolytic ability of innate immune cells. When TALL-104 or LAK cells were used as effectors, our results were in excellent agreement with results obtained when GrB-transfected CHO cells, T-cell lines or CTL stimulated in vitro, were employed as effector cells [24, 25]. TALL-104 or LAK cells secreted significant amounts of GrB only when stimulated with an NK-sensitive target cell line indicating that the GrB ELISPOT assay primarily detected stimulated, and not spontaneous (constitutive), release of GrB. Although assessing GrB release is an indirect measure of target cell lysis, a similar trend between the number of GrB spots per well in the ELISPOT assay and specific lysis in the 51Cr-release was observed. Therefore, the GrB ELISPOT assay is a viable alternative to the 51Cr-release assay for measuring MHC non-restricted cytolytic activity.

Preformed granules that contain mature GrB are constitutively expressed in NK cells, thus NK cells are always armed with functional GrB. Preformed GrB is rapidly released upon recognition and conjunction of the effector cell and this process is Ca2+-dependent [18, 19, 32]. In contrast, IFN-γ is produced de novo upon activation and is secreted within hours [33]. The differences observed in the pattern of GrB and IFN-γ secretion suggest that the GrB measured in the ELISPOT assay is due to degranulation of pre-formed GrB whereas IFN-γ secretion results from protein synthesis de novo.

To confirm that GrB measured in the ELISPOT assay was released via degranulation, effector cells were treated with inhibitors of cellular secretion: brefeldin A, BAPTA-AM and EGTA. Brefeldin A reversibly disrupts protein translocation from the endoplasmic reticulum to the Golgi apparatus, blocking the production and subsequent secretion of newly synthesized proteins [34]. BAPTA-AM and EGTA are both Ca2+-chelating agents and therefore can block Ca2+-dependent degranulation. Cell permeant BAPTA-AM contains acetoxymethyl ester groups that are removed by cytosolic nonspecific esterases, trapping the chelator within the cell. In a series of experiments, treatment of effector cells with brefeldin A significantly decreased IFN-γ, but not GrB secretion, whereas, BAPTA-AM abrogated GrB secretion but its effect on IFN-γ secretion was not apparent (data not shown). EGTA, which sequesters extracellular Ca2+, could also abrogate GrB secretion measured in the ELISPOT assay. However, significantly higher concentrations of EGTA (4–40 mM) than BAPTA-AM were needed to block GrB secretion (data not shown). These data are in good agreement with recently published findings [35] which demonstrate that higher concentrations of EGTA are needed to block degranulation compared to BAPTA-AM. Although adherence of cytolytic cells to their targets is a prerequisite for granule release, this interaction is dependent on Mg2+, but not Ca2+ [19]. Thus, the decrease in GrB secretion after BAPTA-AM and EGTA treatment cannot be attributed to inhibition of adhesion between the effector and target cells, but results from inhibition of degranulation.

Recently, a flow cytometric assay based on CD107a (lysosomal-associated membrane protein-1) mobilization was developed to measure degranulation of cytolytic cells [28, 29]. CD107a is a vesicle membrane protein of cytolytic granules that is transiently expressed on the surface of effector cells during degranulation. Correlations between direct lytic ability and surface expression of CD107a on effector cells has been shown, indicating that CD107a expression is a reliable measure of cytolytic capacity [28, 29]. In our study, CD107a expression correlated with GrB secretion (R2 = 0.89). Both the release of GrB and the expression of CD107a was observed as early as 30 min after LAK cells were stimulated with relevant target cells, and increased with extended effector-target cell interaction. These data confirm that the GrB ELISPOT assay is an excellent measure of cytotoxic capacity mediated by effector cell degranulation.

When the ELISPOT assays were directly compared to the 51Cr-release assay, they demonstrated higher sensitivity with both TALL-104 and LAK cells as effector cells, data consistent with previous studies [24, 25, 36, 37]. The ELISPOT assays enumerate antigen specific lymphocyte frequency by measuring secretion of specific immune proteins engaged in the specific pathway utilized to mediate lysis of target cells, whereas the 51Cr-release assay measures cytotoxic ability regardless of the mechanisms of the killing. Therefore, unlike the 51Cr-release assay, the ELISPOT assays are both qualitative and quantitative.

It is important to emphasize that 51Cr-release and the GrB ELISPOT assay measure different aspects of cell-mediated killing – target cell death and effector cell function, respectively. A limitation of the GrB ELISPOT assay is that it measures degranulation, not direct target cell lysis. As such, degranulation may not always equate to cell death if target cells contain serpin proteinase inhibitor 9 (PI9), a protein that inhibits the proteolytic activity of GrB, [38] or if effector cells are perforin deficient. The GrB ELISPOT assay also does not account for cytotoxicity mediated by FasL pathway. Therefore, when appropriate, the two assays should be used in concert. However, the high sensitivity and specificity of the ELISPOT assay are beneficial for monitoring clinical trials where frequently there are limited numbers of patients' cells available or target cells cannot be effectively labeled. Target cells that resist or do not tolerate labeling, such as some primary tumor cells, can still be utilized in the GrB ELISPOT assay. Additionally, compared to the 51Cr-release assay, the GrB ELISPOT provides the precusory frequency of cells with the potential to kill targets. Although a number of flow cytometric assays have been developed to assess target cell cytotoxicity as well as identify the phenotype of the effector cells mediating the immune response, these assays are not as sensitive as the ELISPOT assay.

The use of the IFN-γ ELISPOT assay as a surrogate measure for CTL and NK responses has recently gained increased application as an alternative to the 51Cr-release assay [36, 39–43]. However, the IFN-γ ELISPOT assay may not be an accurate measure of cytotoxic lymphocytes since 1) non-cytotoxic cells can secrete IFN-γ and 2) CTL with lytic activity do not always secrete IFN-γ [44–48]. The release of GrB is a more specific measure of cytotoxic lymphocytes than IFN-γ because the expression of GrB is restricted to CTL and NK cells [8, 49, 50]. Therefore, the GrB ELISPOT assay may be a more direct measure of innate immunity compared to the IFN-γ ELISPOT. The high sensitivity and specificity of the ELISPOT assays are beneficial for monitoring clinical trials where frequently there are limited numbers of patients' cells available. As such, simultaneous use of the IFN-γ and GrB ELISPOT assays may provide important immunological insight into patient responses that may then be directly assessed against clinical outcome.

Conclusion

Our data demonstrate that the GrB ELISPOT assay is a viable alternative to the standard 51Cr-release assay to measure granule-mediated cytotoxicity and could be easily adapted to reliably and accurately measure MHC non-restricted cytotoxicity indicative of NK and LAK activity. The GrB ELISPOT assay measured GrB release due to degranulation of stimulated effector cells. Additionally, GrB is a more specific candidate marker than IFN-γ to measure the cytotoxic capacity of innate immune effector cells such as NK cells.

Author's contributions

KSW and AM designed the study, analyzed the data and drafted the manuscript. KSW carried and prepared the cell lines and performed the majority of the immunogical assays. MWB performed and analyzed the flow cytometric CD107a assay data. SS participated in the design of the study and preparation of the manuscript. TS, DK and MB participated in the design of the study and served as expert advisors. All authors read and approved the final manuscript.

References

  1. Wu J, Cherwinski H, Spies T, Phillips JH, Lanier LL: DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. J Exp Med. 2000, 192: 1059-1068. 10.1084/jem.192.7.1059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Berke G: The CTL's kiss of death. Cell. 1995, 81: 9-12. 10.1016/0092-8674(95)90365-8.

    Article  CAS  PubMed  Google Scholar 

  3. Nagata S, Golstein P: The Fas death factor. Science. 1995, 267: 1449-1456.

    Article  CAS  PubMed  Google Scholar 

  4. Rouvier E, MF MF Luciani, Golstein P: Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J Exp Med. 1993, 177: 195-200. 10.1084/jem.177.1.195.

    Article  CAS  PubMed  Google Scholar 

  5. Kagi D, F F Vignaux, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P: Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994, 265: 528-530.

    Article  CAS  PubMed  Google Scholar 

  6. Lowin B, Hahne M, Mattmann C, Tschopp J: Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994, 370: 650-652. 10.1038/370650a0.

    Article  CAS  PubMed  Google Scholar 

  7. Tschopp J, Nabholz M: Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol. 1990, 8: 279-302.

    Article  CAS  PubMed  Google Scholar 

  8. Jenne DE, Tschopp J: Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol Rev. 1988, 103: 53-71.

    Article  CAS  PubMed  Google Scholar 

  9. Podack ER, Kupfer A: T-cell effector functions: mechanisms for delivery of cytotoxicity and help. Annu Rev Cell Biol. 1991, 7: 479-504.

    Article  CAS  PubMed  Google Scholar 

  10. Podack ER: Execution and suicide: cytotoxic lymphocytes enforce Draconian laws through separate molecular pathways. Curr Opin Immunol. 1995, 7: 11-16. 10.1016/0952-7915(95)80023-9.

    Article  CAS  PubMed  Google Scholar 

  11. Peters PJ, Geuze HJ, Donk HA van der, Borst J: A new model for lethal hit delivery by cytotoxic T lymphocytes. Immunol Today. 1990, 11: 28-32. 10.1016/0167-5699(90)90009-X.

    Article  CAS  PubMed  Google Scholar 

  12. Kupfer A, Singer SL, Dennert G: On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J Exp Med. 1986, 163: 489-498. 10.1084/jem.163.3.489.

    Article  CAS  PubMed  Google Scholar 

  13. Young JD, Leong LG, Liu CC, Damiano A, Wall DA, Cohn ZA: Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell. 1986, 47: 183-194. 10.1016/0092-8674(86)90441-1.

    Article  CAS  PubMed  Google Scholar 

  14. Stinchcombe JC, Bossi G, Booth S, Griffiths GM: The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001, 15: 751-761. 10.1016/S1074-7613(01)00234-5.

    Article  CAS  PubMed  Google Scholar 

  15. Kagi D, Hengartner H: Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr Opin Immunol. 1996, 8: 472-477. 10.1016/S0952-7915(96)80033-1.

    Article  CAS  PubMed  Google Scholar 

  16. Clark WR, Walsh CM, Glass AA, Huang MT, R R Ahmed, Matloubian M: Cell-mediated cytotoxicity in perforin-less mice. Int Rev Immunol. 1995, 13: 1-14.

    Article  CAS  PubMed  Google Scholar 

  17. Liu CC, PM PM Persechini, Young JD: Perforin and lymphocyte-mediated cytolysis. Immunol Rev. 1995, 146: 145-175.

    Article  CAS  PubMed  Google Scholar 

  18. Henkart PA: Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985, 3: 31-58. 10.1146/annurev.iy.03.040185.000335.

    Article  CAS  PubMed  Google Scholar 

  19. Martz E: Overview of CTL-target adhesion and other critical events in th cytotoxic mechanism. Cytotoxic Cells: Recognition, Effector Function, Generation, and Methods. Edited by: M Sitkovsky and P Henkart. 1993, Boston, MA, Birkhauser, 9-48.

    Chapter  Google Scholar 

  20. Brunner KT, Manuel J, Cerottini JC, Chapuis B: Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968, 14: 181-196.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Trinchieri G, Perussia B: Human natural killer cells: biologic and pathologic aspects. Lab Invest. 1984, 50: 489-513.

    CAS  PubMed  Google Scholar 

  22. Smyth MJ, Trapani JA: Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today. 1995, 16: 202-206. 10.1016/0167-5699(95)80122-7.

    Article  CAS  PubMed  Google Scholar 

  23. Finn OJ, Lotze MT: A decade in the life of tumor immunology. Clin Cancer Res. 2001, 7: 759s-760s.

    CAS  PubMed  Google Scholar 

  24. Rininsland FH, Helms T, Asaad RJ, Boehm BO, Tary-Lehmann M: Granzyme B ELISPOT assay for ex vivo measurements of T cell immunity. J Immunol Methods. 2000, 240: 143-155. 10.1016/S0022-1759(00)00191-5.

    Article  CAS  PubMed  Google Scholar 

  25. Shafer-Weaver Kimberly, Sayers Thomas, Strobl Susan, Derby Eric, Ulderich Tracy, Baseler Michael, Malyguine Anatoli: The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. Journal of Translational Medicine. 2003, 1: 14-10.1186/1479-5876-1-14.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Cesano A, Santoli D: Two unique human leukemic T-cell lines endowed with a stable cytotoxic function and a different spectrum of target reactivity analysis and modulation of their lytic mechanisms. In Vitro Cell Dev Biol. 1992, 28A: 648-656.

    Article  CAS  PubMed  Google Scholar 

  27. Cesano A, Santoli D: Inducible expression of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and interferon-gamma in two human cytotoxic leukemic T-cell lines. In Vitro Cell Dev Biol. 1992, 28A: 657-662.

    Article  CAS  PubMed  Google Scholar 

  28. Betts MR, Brenchley JM, Price DA, Rosa SC De, Douek DC, Roederer M, Koup RA: Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003, 281: 65-78. 10.1016/S0022-1759(03)00265-5.

    Article  CAS  PubMed  Google Scholar 

  29. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP: Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med. 2003, 9: 1377-1382. 10.1038/nm942.

    Article  CAS  PubMed  Google Scholar 

  30. Trincieri G: Biology of natural killer cells. Adv Immunol. 1989, 47: 187-376.

    Article  Google Scholar 

  31. Kleen TO, Asaad R, Landry SJ, Boehm BO, Tary-Lehmann M: Tc1 effector diversity shows dissociated expression of granzyme B and interferon-gamma in HIV infection. AIDS. 2004, 18: 383-392. 10.1097/00002030-200402200-00003.

    Article  CAS  PubMed  Google Scholar 

  32. Trapani JA, Smyth MJ: Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol. 2002, 2: 735-747. 10.1038/nri911.

    Article  CAS  PubMed  Google Scholar 

  33. Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN: Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother. 2004, 53: 176-186. 10.1007/s00262-003-0478-4.

    Article  PubMed  Google Scholar 

  34. Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J: Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol. 1997, 139: 1137-1155. 10.1083/jcb.139.5.1137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lyubchenko TA, Wurth GA, Zweifach A: Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity. 2001, 15: 847-859. 10.1016/S1074-7613(01)00233-3.

    Article  CAS  PubMed  Google Scholar 

  36. Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML, Kirkwood JM, Scheibenbogen C, Schlom J, Maino VC, Lyerly HK, Lee PP, Storkus W, Marincola F, Worobec A, Atkins MB: Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother. 2002, 25: 97-138. 10.1097/00002371-200203000-00001.

    Article  PubMed  Google Scholar 

  37. Derby EG, Reddy V, Nelson EL, Kopp WC, Baseler MW, Dawson JR, Malyguine AM: Correlation of human CD56+ cell cytotoxicity and IFN-gamma production. Cytokine. 2001, 13: 85-90. 10.1006/cyto.2000.0804.

    Article  CAS  PubMed  Google Scholar 

  38. Bladergroen BA, Meijer CJ, Berge RL ten, Hack CE, Muris JJ, Dukers DF, Chott A, Kazama Y, Oudejans JJ, Berkum O van, Kummer JA: Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system?. Blood. 2002, 99: 232-237. 10.1182/blood.V99.1.232.

    Article  CAS  PubMed  Google Scholar 

  39. Goepfert PA, Bansal A, Edwards BH, Ritter GD Jr, Tellez I, McPherson SA, Sabbaj S, Mulligan MJ: A significant number of human immunodeficiency virus epitope-specific cytotoxic T lymphocytes detected by tetramer binding do not produce gamma interferon. J Virol. 2000, 74: 10249-10255. 10.1128/JVI.74.21.10249-10255.2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kaul R, Plummer FA, Kimani J, Dong T, Kiama P, Rostron T, Njagi E, MacDonald KS, Bwayo JJ, McMichael AJ, Rowland-Jones SL: HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J Immunol. 2000, 164: 1602-1611.

    Article  CAS  PubMed  Google Scholar 

  41. Kaul R, T T Dong, Plummer FA, Kimani J, Rostron T, Kiama P, Njagi E, Irungu E, Farah B, Oyugi J, Chakraborty R, MacDonald KS, JJ JJ Bwayo, McMichael A, Rowland-Jones SL: CD8(+) lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J Clin Invest. 2001, 107: 1303-1310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Currier JR, Kuta EG, Turk E, Earhart LB, Loomis-Price L, Janetzki S, Ferrari G, Birx DL, Cox JH: A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. J Immunol Methods. 2002, 260: 157-172. 10.1016/S0022-1759(01)00535-X.

    Article  CAS  PubMed  Google Scholar 

  43. Altfeld M, Addo MM, Eldridge RL, Yu XG, Thomas S, Khatri A, Strick D, Phillips MN, Cohen GB, Islam SA, Brander SA Kalams C, Goulder PJ, Rosenberg ES, Walker BD: Vpr is preferentially targeted by CTL during HIV-1 infection. J Immunol. 2001, 167: 2743-2752.

    Article  CAS  PubMed  Google Scholar 

  44. Regner M, Lobigs M, Blanden RV, Mullbacher A: Effector cytolotic function but not IFN-gamma production in cytotoxic T cells triggered by virus-infected target cells in vitro. Scand J Immunol. 2001, 54: 366-374. 10.1046/j.1365-3083.2001.00955.x.

    Article  CAS  PubMed  Google Scholar 

  45. Lim DG, Bourcier K Bieganowska, Freeman GJ, Hafler DA: Examination of CD8+ T cell function in humans using MHC class I tetramers: similar cytotoxicity but variable proliferation and cytokine production among different clonal CD8+ T cells specific to a single viral epitope. J Immunol. 2000, 165: 6214-6220.

    Article  CAS  PubMed  Google Scholar 

  46. Slifka MK, Rodriguez F, Whitton JL: Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature. 1999, 401: 76-79. 10.1038/43454.

    Article  CAS  PubMed  Google Scholar 

  47. Bachmann MF, Barner M, Viola A, Kopf M: Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur J Immunol. 1999, 29: 291-299. 10.1002/(SICI)1521-4141(199901)29:01<291::AID-IMMU291>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  48. Masopust D, Vezys V, AL AL Marzo, L L Lefrancois: Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001, 291: 2413-2417. 10.1126/science.1058867.

    Article  CAS  PubMed  Google Scholar 

  49. Bleackley RC, Lobe CG, Duggan B, Ehrman N, Fregeau C, M M Meier, Letellier M, Havele C, Shaw J, Paetkau V: The isolation and characterization of a family of serine protease genes expressed in activated cytotoxic T lymphocytes. Immunol Rev. 1988, 103: 5-19.

    Article  CAS  PubMed  Google Scholar 

  50. Burkhardt JK, Hester S, Lapham CK, Argon Y: The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J Cell Biol. 1990, 111: 2327-2340. 10.1083/jcb.111.6.2327.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute, SAIC-Frederick, Inc., Contract N01-C0-12400.

The content of this publication does not necessarily reflect the view or the policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli Malyguine.

Additional information

Competing interests

None declared.

Authors’ original submitted files for images

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafer-Weaver, K.A., Sayers, T., Kuhns, D.B. et al. Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay. J Transl Med 2, 31 (2004). https://doi.org/10.1186/1479-5876-2-31

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1479-5876-2-31

Keywords