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Abstract
Treatment for both early and advanced melanoma has changed little since the introduction of interferon and IL-2 in 
the early 1990s. Recent data from trials testing targeted agents or immune modulators suggest the promise of new 
strategies to treat patients with advanced melanoma. These include a new generation of B-RAF inhibitors with greater 
selectivity for the mutant protein, c-Kit inhibitors, anti-angiogenesis agents, the immune modulators anti-CTLA4, anti-
PD-1, and anti-CD40, and adoptive cellular therapies. The high success rate of mutant B-RAF and c-Kit inhibitors relies 
on the selection of patients with corresponding mutations. However, although response rates with small molecule 
inhibitors are high, most are not durable. Moreover, for a large subset of patients, reliable predictive biomarkers 
especially for immunologic modulators have not yet been identified. Progress may also depend on identifying 
additional molecular targets, which in turn depends upon a better understanding of the mechanisms leading to 
response or resistance. More challenging but equally important will be understanding how to optimize the treatment 
of individual patients using these active agents sequentially or in combination with each other, with other 
experimental treatment, or with traditional anticancer modalities such as chemotherapy, radiation, or surgery. 
Compared to the standard approach of developing new single agents for licensing in advanced disease, the 
identification and validation of patient specific and multi-modality treatments will require increased involvement by 
several stakeholders in designing trials aimed at identifying, even in early stages of drug development, the most 
effective way to use molecularly guided approaches to treat tumors as they evolve over time.

Current prospects for melanoma therapy
The only approved chemotherapy for metastatic mela-
noma, DTIC, or its oral equivalent temozolomide, has a
response rate of about 10% and a median survival of 8-9
months. The other approved agent for advanced mela-
noma is high dose interleukin-2, which can induce dra-
matic complete and durable responses. However, only
one patient in twenty derives lasting benefit. Multi-agent
combinations [1-7] and bio-chemotherapy regimens [8-
15] were reported to produce much higher objective
response rates in phase 2 trials, but did not improve over-
all survival.

A series of scientific and clinical advances in the past
decade has led to a rapid evolution of new treatment
strategies. Mutations in B-RAF and c-Kit, have recently
been proven to be therapeutic targets in phase 1 clinical
trials [16]. Of great potential, a small molecule inhibitor

of B-RAF, PLX 4032, induced tumor regression in 70% of
cases with a 9 month median progression free survival in
the 70% of patients whose metastatic tumors express a
specific mutant of B-RAF (V600E). Substantial attention
has been focused on the biological mechanisms that led
to the success of PLX4032, as other single agent B-RAF
and downstream MEK inhibitors were less active [17-19].

Successful results were also reported for imatinib
(another kinase inhibitor) in a small but distinct subset of
patients with c-kit mutated tumors [20]. Finding addi-
tional relevant treatment targets will likely extend the
number of patients for whom highly active initial treat-
ment regimens may be chosen.

With regard to biological therapies, the combination of
a chemotherapy preparative regimen with adoptive T-cell
immunotherapy [21], while technically demanding, has a
high response rate, demonstrating the potential efficacy
of activated T cells. In addition, the removal of immuno-
logic inhibition at checkpoints in T-cell activation and
effector function by agents such as anti-CTLA4 antibody
[22,23] results in tumor regression. These approaches
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may be even more active when combined with other
agents that activate or inhibit key molecular regulators of
T-cell function [24]. It may be possible to increase the
durability of cell signaling agents and enhance the effects
of immune-mediated responses if the best way to com-
bine the distinct advantages of each could be identified.
Although only a subset of patients achieve durable remis-
sions follow the administration of single biological
agents, it been not yet been possible to predict a respon-
sive subgroup to guide patient selection. However, spe-
cific activating mutations required for cell signaling
inhibitors should not be a limitation. Thus, patient selec-
tion for driver mutations, emergence of resistance, timing
and durability of responses, and the need for chronic
therapy are different but potentially complementary for
each modality. It is presently not known whether
responders to immunotherapy overlap with responders to
targeted agents, but it is likely that most patients would
benefit from a combinatorial approaches in which various
agents are given together or in sequence.

Combination chemotherapy for cancer was established
in the 1960s when the treatment of acute lymphocytic
leukemia and lymphoma followed the strategy of antibi-
otic therapy for tuberculosis in which two or more drugs,
each with a different mechanism of action were most
effective. In principle, the agents used in the combina-
tions should have additive effects on tumor growth and
non-overlapping toxicity. Individual agents used in com-
bination have generally been tested in phase 1 trials to
determine the maximal tolerated dose (MTD) and in
phase 2 studies at the highest tolerated dose to determine
activity based on objective response rates. This sequential
approach to drug development is well established, but
may not be sufficient to effectively test new promising
agents in combination in early phases of development.
We may learn from the experience with HAART (Highly
Active Anti-Retroviral Therapy) used to treat patients
with HIV infection. The discovery of highly potent single
drug treatment has lead to dramatic responses but also to
rapid drug resistance. Combinations of three or four dif-
ferent antiretroviral drugs, such as nucleoside and non-
nucleoside reverse transcriptase and protease inhibitors,
block HIV replication and control viral load, reducing the
emergence of HIV escape variants and maintaining CD4+
T cell numbers. Moreover, the recognition that monitor-
ing viral load was a useful surrogate biomarker of viral
dynamics, overall treatment efficacy, and survival,
allowed drugs to be tested efficiently and more accurately
[25,26]. The rapid emergence of a multitude of agents
with novel targets and mechanisms of action will require
changes in the way combinations are developed. In order
to effectively validate and expand targeted therapy, the
rationale supporting clinical trials design will need to be
adapted to keep pace with the opportunities provided by

these new agents. Dropping useful agents in early phase
single agent development because they may not induce
rapid changes in tumor size might be avoided by moni-
toring effects on specific targets and tumor growth rates.
Finding more accurate predictors of biologic activity and
overall survival should improve the accuracy of go-no-go
decisions for advancing to phase 2 and phase 3 trials [27-
29]. Understanding molecular tumor biology, pharmaco-
dynamic markers, and imaging technology should lead to
the development of biomarkers as trial end points that
can help develop active regimes more effectively while
reducing the number of unsuccessful studies [30,31].

Early Experience with Molecular Targeted 
Treatment of Melanoma
The single activating mutation in B-RAF, V600E, is found
at all stages of melanoma, including 70% of patients with
metastatic melanoma [32-34]. The first attempt to use a
B-RAF inhibitor, sorafenib, showed little activity in mela-
noma, and combinations of sorafenib with chemotherapy
were not superior to chemotherapy alone in randomized
trials [35-37]. However, in a phase 1 study [16], PLX4032,
a B-RAF inhibitor with increased specificity for the
V600E mutant protein, has demonstrable activity. As
exciting as these early results appear, there were no com-
plete responses reported, a third of patients whose cancer
bore the target mutation did not respond, and most
patients progressed after 9 months. Several mechanisms
may be associated with both primary and secondary
resistance even with continued inhibition of B-RAF.
Almost all resistant tumor will have inactivating PTEN
point mutations, over expression of the PI3K/mTOR/Akt
pathway, and in addition, feedback loops stimulating
downstream pMEK or a switch to the dominance of C-
RAF. These all suggest possible targets to be included in
combination therapy [38,39]. It is generally accepted that
treatment may need to target both active pathways and it
is possible that the combined effects may be measured on
a downstream target [40].

To make matters more complex, ATP-competitive RAF
kinase inhibitors can have opposing effects depending on
the cellular context; growth arrest and apoptosis occur in
BRAFV600E tumors, while in the setting of KRAS muta-
tions and wild type B-RAF, inhibitors can activate the
RAF-MEK-ERK pathway enhancing tumor growth
[41,42].

Continuing the trend in melanoma, another example of
patients selection for targeted therapy is c-Kit mutations.,
which are often present in acral and mucosal tumors.
Treatment with c-Kit inhibitors results in a 50% or
greater response rate [20]. However, as a caution against
over generalizations, the activation of non mutated c-
KIT/SCF in uveal melanoma does not translate into clini-
cal efficacy [43]. This suggests that responses are pre-
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dicted by specific gene mutations and resulting molecular
pathogenesis (such as the L576P on exon 11 or the V642E
on exon 13) rather than overall protein expression or acti-
vation [20]. Common in uveal melanomas, mutations in
the G proteins, GNACQ and GNAC11, are more difficult
to target than serine kinases and novel biochemical
approaches should be sought. New clinical trials based on
the discovery of targets, such as the EGFB4 and related
activating mutations found in 20% of patients may
increasingly broaden the number of patients that could
be treated with a first line highly active agent [44].

Suggestions for combination therapy
Most advanced tumors have developed multiple growth
and survival pathways, so that changing their natural his-
tory will require multi-potent treatment strategies. Sev-
eral publications in the past 5 years have suggested new
strategies for designing rational treatment combinations.
The idea of limiting growth through inhibition of a single
pathway, to which the tumor is "addicted", emerged from
clinical trials with imatinib in BCR/Abl CML [45], and c-
Kit in GIST [46], Trastuzumab in Her-2 neu positive
breast cancer [47], and more recently, EGFR in a sub-
group of patients with non small cell lung cancer [48]. For
these agents resistance often develops through selection
of escape mutations in the targeted kinase. Identifying
these resistance pathways provides an opportunity to
change treatment accordingly [49]. In the case of mela-
noma with the B-RAF mutation, positive feedback loops
may paradoxically lead to over expression of inhibited
pathways downstream. Combining inhibition of the
PI3K-mTOR pathway with MEK inhibitors may effec-
tively treat KRAS mutated lung cancers, making this
combination a high priority that was unexpectedly dis-
covered by RNA screening [50]. Another appealing con-
cept takes advantage of the intrinsic vulnerability of a
tumor; for example, combining a DNA repair inhibitor of
PARP with a DNA damaging agent may greatly enhance
effectiveness in tumors that have already lost one path-
way of DNA repair. A striking example is emerging in the
treatment of patients with BRCA-1 mutations [51-53].

It is worth noting the increasing value of RNA interfer-
ence (RNAi) in discovery and functional validation for
potential therapeutic targets identified through large-
scale RNAi screens. In fact, gene-specific RNAi provides
a powerful tool to demonstrate that specific knockdown
of a mutant allele triggers cell death or proliferative arrest
in oncogene-dependent cell lines. The tumor specific
context, for example of PTEN deficiency with PI3K acti-
vation, allows more accurate screening of new agents
compared to cells lines with intact PTEN [54,55]. RNA
screens may provide unexpected findings that suggest
therapeutic combinations in resistant disease. For exam-
ple, ectopic expression of two genes that act on retinoic

acid (RA) signalling can cause resistance to growth arrest
and apoptosis induced by inhibitors of histone deacety-
lase (HDACI) of different chemical classes. This suggests
that that the RA pathway may be a rate-limiting target of
HDACI which could lead to strategies that enhance the
therapeutic efficacy of HDACI [56].

Moreover, for planning therapy, it will be important to
distinguish driver mutations from passenger mutations,
as recent studies have revealed that many tumors (i.e.
human colorectal cancers) undergo numerous genetic
and epigenetic alterations. These alterations likely derive
from a mixture of "drivers" that play a causal role in
tumor development and progression, and "passengers"
that have little or no effect on tumor growth. The design
of targeted therapeutics may be dependent on the ability
to distinguish drivers from passengers [57,58].

Combining signaling inhibitors with other 
strategies
Sulllivan and Atkins [59] and Palmieri et al. [34] reviewed
the use of targeted agents in melanoma and a more gen-
eral discussion about therapy combinations was provided
by Kwak, Clark, and Chabner [60]. Most combinations
reported in these reviews involve chemotherapy and
often demonstrate how, after safety evaluation in early
clinical trials, promising new agents and combinations
may stall and never reach the threshold to justify longer,
larger, and more expensive trials. Moreover, these trials
result in little progress if single agents and empiric com-
binations are not adequately controlled or analyzed. One
advantage of introducing rationally designed combina-
tion therapy at an early stage, would be gaining experi-
ence in the drug's potential even while single agent
development is progressing.

Molecular characterization of the tumor before and
during treatment should take a paramount role in trial
design particularly when mutations or activated pathways
are targeted. Similarly, changes in tumor phenotypes
need to be monitored during the natural progression of
the disease or in response to the selective pressure exer-
cised by the treatment. Molecular diversity among
tumors and within tumors may account for the high
degree of variability in response to treatment even in
tumor lines with the same primary drivers. Treatment
will need to be re-evaluated and changed on a continual
basis over time, much as in chronic infections such as for
malaria, tuberculosis or HIV. Introducing multiple drugs
individually that increase survival by months may not
result in prolonged control of the malignant process, but
rather in a serial selection of resistant mutant cancer cell
populations ever more difficult to control with available
therapeutic tools.

Melanoma and renal cell carcinoma have long been
held as examples of immunogenic tumors and two kinds
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of immunotherapy, IFN-alpha in the adjuvant setting and
IL-2 for metastatic melanoma, are currently approved
[61]. Perhaps the most impressive results in the immuno-
therapy of melanoma are achieved with adoptive transfer
of autologous tumor-reactive lymphocytes which can
induce rapid objective responses in up to 70% of recipi-
ents, including those with large tumor masses. The activ-
ity of adoptively transferred T cells with recombinant or
chimeric receptors has strongly supported this approach
[62]. In contrast to the dramatic effects of adoptive T-cell
therapy, vaccines have shown far less interesting effects.
None the less, a phase 3 trial combining IL-2 with a single
melanoma antigen epitope has demonstrated a significant
improvement in overall response rate, progression free
survival, and a strong trend in improvement of overall
survival compared to treatment with IL-2 alone [63].
Interestingly, the response rate induced by the adminis-
tration of peptide alone was minimal, strongly emphasiz-
ing the need to test combinations. Results from an
ongoing phase 3 study in which vaccination against
Mage-3 is combined with a novel adjuvant are anxiously
awaited. The study identified a transcriptional signature
in tumors that are likely to respond to vaccine suggesting
that even for immunotherapy, predictors of responsive-
ness could be used in the future for patient stratification
[64].

Reversing immunologic suppression by intervention
with anti-CTLA-4, and more recently anti-CD40, anti-
PD-1L, and 1-MT (1-methyl-D-tryptophan) has opened a
new door to immune activation against melanoma which
can be considered for combinatorial therapy [65,66].
Based largely on data from anti-CTLA-4 treatment,
reversal of immunologic suppression may have late but
prolonged effects in both tumor response and survival
presenting another challenge for the evaluation of combi-
nation therapy [67,68].

Melanoma cell lines often display constitutive up regu-
lation of anti- apoptotic molecules such as Bcl-2, which
may partly account for resistance to chemotherapy. Yet,
the combination of DTIC plus oblimersen, anti-sense
Bcl-2, had little effect on survival [69,70]. Hersey and
Zhang [71] have proposed combining pro-apoptotic
drugs, with immunotherapy. Their results suggest that
within a polyclonal population sensitive cells have pre-
dominantly activated the FADD/caspase 8 pathway
whereas resistant cells have dominant activation of NF-
kB and MEK pathways. Thus, subsets of melanoma cells
acquire resistance to apoptosis unless intrinsic anti-apop-
totic signaling is interrupted. Up-regulation of the anti-
apoptotic Bcl-2 family member Mcl-1 is another mecha-
nism critical for protection of melanoma cells against
endoplasmic reticulum stress-induced apoptosis [72].
Pro-apoptotic agents have not yet been fully exploited
outside of chemotherapy combinations and may consti-

tute an important group agent to combine with growth
signaling inhibition and immunotherapy [73].

Additionally, some melanomas may be susceptible to
treatment with anti-angiogenic agents. When anti-angio-
genic agents are used in combination with chemotherapy,
the response rate to chemotherapy may be improved [74].
Understanding the mechanisms of resistance to bevaci-
zumab [an antibody that binds to and neutralizes the bio-
logic activity of human vascular endothelial growth factor
(VEGF)] may be relevant to its use in combination. It is
possible that effects are limited by either intrinsic resis-
tance to bevacizumab in an inflammatory tumor milieu
or lack of activity to chemotherapy, so that other combi-
nations with these agents need to be evaluated. In mod-
els, vascular disrupting agents that target the established
tumor vasculature result in extensive intratumoral
hypoxia and cell death. However, a rim of viable tumor
tissue from which angiogenesis-dependent regrowth can
occur, may depend on mobilization and tumor coloniza-
tion of circulating endothelial progenitor cells (CEP).
Thus co-treatment that blocks CEPs might not result in
further tumor regression, but could affect the ability of
tumors to continue growth after therapy. Low dose met-
ronomic chemotherapy, such as cyclophosphamide 50
mg daily, has been proposed as an anti-angiogenic agent
which may potentiate the effectiveness of vascular dis-
rupting agents [75].

Another group of promising agents to consider for
combination therapy are histone deacetylase (HDAC)
and methylation inhibitors; preclinical reports have
shown that HDAC inhibitors synergize with cytotoxic
agents, such as DNA topoisomerase, imatinib, borte-
zomib, and various biologic agents. The same studies
have shown that when combining agents, the sequence
and doses may have a profound impact. As is the case for
many biologic agents, the optimal doses for target inhibi-
tion may not directly correlate with the traditional maxi-
mum-tolerated dose (MTD). A phase I study suggested
an impressive response rate in patients with otherwise
refractory melanoma, breast, cervical, prostate, and
small-cell lung cancer [76]. Other concepts not discussed
here but which deserve mention are inhibitors of Notch1,
Wnt, and HEDGEHOG pathways and cellular adhesion
molecules [77-80].

This discussion is not meant to cover all emerging con-
cepts for the treatment of melanoma, but provides exam-
ples of the myriad permutations that may need to be
tested in an organized fashion to identify the best possi-
ble combinatorial approaches.

Limitations of future trial design and potential 
solutions
Drugs such as the B-RAF inhibitors have shown efficacy
in early clinical trials, and it is likely they will become
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standard for first line treatment in selected patients.
Although these examples provide convincing proof of
principle that some of these novel approaches constitute
new tools for the treatment of cancer, they have also
proven that a single drug is unlikely to induce lasting clin-
ical benefit. New drugs are licensed primarily on the basis
of single agent safety and efficacy for a specific clinical
indication. Yet once licensed, active drugs such as bevaci-
zumab, trastuzumab, and bortezomib have been available
for new uses in combinations, typically in empirically
based clinical trials. However, even this less than optimal
process, applies only to drugs that are available because of
their obvious effectiveness in early trials, which may elim-
inate many that are likely to work in selected patients or
in combination. Thus, the future of therapy will depend
on cooperation among various stakeholders and an orga-
nized effort to derive the maximum information from
clinical trials. This also requires a willingness to share
information and minimizing obstacles placed by intellec-
tual property and related financial interests. It is reason-
able to expect enlightened self-interest to recognize the
need for multiple participants to focus on knowledge
gained and the overall benefit of treating cancer patients
in clinical trials. A paramount step along the way would
be to foster arrangements that could allow more access to
agents both for clinical and pre-clinical studies and more
complete access and analysis of study results. For many
patients, the molecular characterization of melanoma
may allow predictive classification for selection of
patients entering trials [81]. The ability to utilize effective
agents in combination and/or in sequence could allow
individualized treatment approaches adapted to a tumor's
evolving biology [82]. Trials could be designed and made
available for the patient rather than the patient made
available for treatment. Thus, it is our hope that in the
future appropriate combinations of drugs will be readily
available to address the likely limits of single agents as has
been successfully done with chemotherapy of some can-
cers and persistent infections.
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